
Abstract
Clustering algorithms are attractive for the task of class iden-
tification in spatial databases. However, the application to
large spatial databases rises the following requirements for
clustering algorithms: minimal requirements of domain
knowledge to determine the input parameters, discovery of
clusters with arbitrary shape and good efficiency on large da-
tabases. The well-known clustering algorithms offer no solu-
tion to the combination of these requirements. In this paper,
we present the new clustering algorithm DBSCAN relying on
a density-based notion of clusters which is designed to dis-
cover clusters of arbitrary shape. DBSCAN requires only one
input parameter and supports the user in determining an ap-
propriate value for it. We performed an experimental evalua-
tion of the effectiveness and efficiency of DBSCAN using
synthetic data and real data of the SEQUOIA 2000 bench-
mark. The results of our experiments demonstrate that (1)
DBSCAN is significantly more effective in discovering clus-
ters of arbitrary shape than the well-known algorithm CLAR-
ANS, and that (2) DBSCAN outperforms CLARANS by a
factor of more than 100 in terms of efficiency.
Keywords: Clustering Algorithms, Arbitrary Shape of Clus-
ters, Efficiency on Large Spatial Databases, Handling Noise.

1. Introduction

Numerous applications require the management of spatial
data, i.e. data related to space. Spatial Database Systems
(SDBS) (Gueting 1994) are database systems for the man-
agement of spatial data. Increasingly large amounts of data
are obtained from satellite images, X-ray crystallography or
other automatic equipment. Therefore, automated know-
ledge discovery becomes more and more important in spatial
databases.

Several tasks of knowledge discovery in databases (KDD)
have been defined in the literature (Matheus, Chan & Pi-
atetsky-Shapiro 1993). The task considered in this paper is
class identification, i.e. the grouping of the objects of a data-
base into meaningful subclasses. In an earth observation da-
tabase, e.g., we might want to discover classes of houses
along some river.

Clustering algorithms are attractive for the task of class
identification. However, the application to large spatial data-
bases rises the following requirements for clustering algo-
rithms:
(1) Minimal requirements of domain knowledge to deter-

mine the input parameters, because appropriate values

are often not known in advance when dealing with large
databases.

(2) Discovery of clusters with arbitrary shape, because the
shape of clusters in spatial databases may be spherical,
drawn-out, linear, elongated etc.

(3) Good efficiency on large databases, i.e. on databases of
significantly more than just a few thousand objects.

The well-known clustering algorithms offer no solution to
the combination of these requirements. In this paper, we
present the new clustering algorithm DBSCAN. It requires
only one input parameter and supports the user in determin-
ing an appropriate value for it. It discovers clusters of arbi-
trary shape. Finally, DBSCAN is efficient even for large spa-
tial databases. The rest of the paper is organized as follows.
We discuss clustering algorithms in section 2 evaluating
them according to the above requirements. In section 3, we
present our notion of clusters which is based on the concept
of density in the database. Section 4 introduces the algo-
rithm DBSCAN which discovers such clusters in a spatial
database. In section 5, we performed an experimental evalu-
ation of the effectiveness and efficiency of DBSCAN using
synthetic data and data of the SEQUOIA 2000 benchmark.
Section 6 concludes with a summary and some directions for
future research.

2. Clustering Algorithms

There are two basic types of clustering algorithms (Kaufman
& Rousseeuw 1990): partitioning and hierarchical algo-
rithms. Partitioning algorithms construct a partition of a da-
tabase D of n objects into a set of k clusters. k is an input pa-
rameter for these algorithms, i.e some domain knowledge is
required which unfortunately is not available for many ap-
plications. The partitioning algorithm typically starts with
an initial partition of D and then uses an iterative control
strategy to optimize an objective function. Each cluster is
represented by the gravity center of the cluster (k-means al-
gorithms) or by one of the objects of the cluster located near
its center (k-medoid algorithms). Consequently, partitioning
algorithms use a two-step procedure. First, determine k rep-
resentatives minimizing the objective function. Second, as-
sign each object to the cluster with its representative “clos-
est” to the considered object. The second step implies that a
partition is equivalent to a voronoi diagram and each cluster
is contained in one of the voronoi cells. Thus, the shape of all

A Density-Based Algorithm for Discovering Clusters
in Large Spatial Databases with Noise

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu

Institute for Computer Science, University of Munich
Oettingenstr. 67, D-80538 München, Germany

{ester | kriegel | sander | xwxu}@informatik.uni-muenchen.de

Published in Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96)

clusters found by a partitioning algorithm is convex which is
very restrictive.

Ng & Han (1994) explore partitioning algorithms for
KDD in spatial databases. An algorithm called CLARANS
(Clustering Large Applications based on RANdomized
Search) is introduced which is an improved k-medoid meth-
od. Compared to former k-medoid algorithms, CLARANS
is more effective and more efficient. An experimental evalu-
ation indicates that CLARANS runs efficiently on databases
of thousands of objects. Ng & Han (1994) also discuss meth-
ods to determine the “natural” number knat of clusters in a
database. They propose to run CLARANS once for each k
from 2 to n. For each of the discovered clusterings the sil-
houette coefficient (Kaufman & Rousseeuw 1990) is calcu-
lated, and finally, the clustering with the maximum silhou-
ette coefficient is chosen as the “natural” clustering.
Unfortunately, the run time of this approach is prohibitive
for large n, because it implies O(n) calls of CLARANS.

CLARANS assumes that all objects to be clustered can re-
side in main memory at the same time which does not hold
for large databases. Furthermore, the run time of CLARANS
is prohibitive on large databases. Therefore, Ester, Kriegel
&Xu (1995) present several focusing techniques which ad-
dress both of these problems by focusing the clustering pro-
cess on the relevant parts of the database. First, the focus is
small enough to be memory resident and second, the run
time of CLARANS on the objects of the focus is significant-
ly less than its run time on the whole database.

Hierarchical algorithms create a hierarchical decomposi-
tion of D. The hierarchical decomposition is represented by
a dendrogram, a tree that iteratively splits D into smaller
subsets until each subset consists of only one object. In such
a hierarchy, each node of the tree represents a cluster of D.
The dendrogram can either be created from the leaves up to
the root (agglomerative approach) or from the root down to
the leaves (divisive approach) by merging or dividing clus-
ters at each step. In contrast to partitioning algorithms, hier-
archical algorithms do not need k as an input. However, a ter-
mination condition has to be defined indicating when the
merge or division process should be terminated. One exam-
ple of a termination condition in the agglomerative approach
is the critical distance Dmin between all the clusters of Q.

So far, the main problem with hierarchical clustering al-
gorithms has been the difficulty of deriving appropriate pa-
rameters for the termination condition, e.g. a value of Dmin
which is small enough to separate all “natural” clusters and,
at the same time large enough such that no cluster is split into
two parts. Recently, in the area of signal processing the hier-
archical algorithm Ejcluster has been presented (García,
Fdez-Valdivia, Cortijo & Molina 1994) automatically deriv-
ing a termination condition. Its key idea is that two points be-
long to the same cluster if you can walk from the first point
to the second one by a “sufficiently small” step. Ejcluster
follows the divisive approach. It does not require any input
of domain knowledge. Furthermore, experiments show that
it is very effective in discovering non-convex clusters. How-
ever, the computational cost of Ejcluster is O(n2) due to the
distance calculation for each pair of points. This is accept-
able for applications such as character recognition with

moderate values for n, but it is prohibitive for applications on
large databases.

Jain (1988) explores a density based approach to identify
clusters in k-dimensional point sets. The data set is parti-
tioned into a number of nonoverlapping cells and histograms
are constructed. Cells with relatively high frequency counts
of points are the potential cluster centers and the boundaries
between clusters fall in the “valleys” of the histogram. This
method has the capability of identifying clusters of any
shape. However, the space and run-time requirements for
storing and searching multidimensional histograms can be
enormous. Even if the space and run-time requirements are
optimized, the performance of such an approach crucially
depends on the size of the cells.

3. A Density Based Notion of Clusters
When looking at the sample sets of points depicted in
figure 1, we can easily and unambiguously detect clusters of
points and noise points not belonging to any of those clus-
ters.

The main reason why we recognize the clusters is that
within each cluster we have a typical density of points which
is considerably higher than outside of the cluster. Further-
more, the density within the areas of noise is lower than the
density in any of the clusters.

In the following, we try to formalize this intuitive notion
of “clusters” and “noise” in a database D of points of some
k-dimensional space S. Note that both, our notion of clusters
and our algorithm DBSCAN, apply as well to 2D or 3D Eu-
clidean space as to some high dimensional feature space.
The key idea is that for each point of a cluster the neighbor-
hood of a given radius has to contain at least a minimum
number of points, i.e. the density in the neighborhood has to
exceed some threshold. The shape of a neighborhood is de-
termined by the choice of a distance function for two points
p and q, denoted by dist(p,q). For instance, when using the
Manhattan distance in 2D space, the shape of the neighbor-
hood is rectangular. Note, that our approach works with any
distance function so that an appropriate function can be cho-
sen for some given application. For the purpose of proper vi-
sualization, all examples will be in 2D space using the Eu-
clidean distance.

Definition 1: (Eps-neighborhood of a point) The Eps-
neighborhood of a point p, denoted by NEps(p), is defined by
NEps(p) = {q ∈D | dist(p,q) ≤ Eps}.

A naive approach could require for each point in a cluster
that there are at least a minimum number (MinPts) of points
in an Eps-neighborhood of that point. However, this ap-

figure 1: Sample databases

database 1 database 2 database 3

proach fails because there are two kinds of points in a clus-
ter, points inside of the cluster (core points) and points on the
border of the cluster (border points). In general, an Eps-
neighborhood of a border point contains significantly less
points than an Eps-neighborhood of a core point. Therefore,
we would have to set the minimum number of points to a rel-
atively low value in order to include all points belonging to
the same cluster. This value, however, will not be character-
istic for the respective cluster - particularly in the presence of
noise. Therefore, we require that for every point p in a clus-
ter C there is a point q in C so that p is inside of the Eps-
neighborhood of q and NEps(q) contains at least MinPts
points. This definition is elaborated in the following.

Definition 2: (directly density-reachable) A point p is di-
rectly density-reachable from a point q wrt. Eps, MinPts if

1) p ∈ NEps(q) and
2) |NEps(q)| ≥ MinPts (core point condition).

Obviously, directly density-reachable is symmetric for pairs
of core points. In general, however, it is not symmetric if one
core point and one border point are involved. Figure 2 shows
the asymmetric case.

Definition 3: (density-reachable) A point p is density-
reachable from a point q wrt. Eps and MinPts if there is a
chain of points p1, ..., pn, p1 = q, pn = p such that pi+1 is di-
rectly density-reachable from pi.

Density-reachability is a canonical extension of direct
density-reachability. This relation is transitive, but it is not
symmetric. Figure 3 depicts the relations of some sample
points and, in particular, the asymmetric case. Although not
symmetric in general, it is obvious that density-reachability
is symmetric for core points.

Two border points of the same cluster C are possibly not
density reachable from each other because the core point
condition might not hold for both of them. However, there
must be a core point in C from which both border points of C
are density-reachable. Therefore, we introduce the notion of
density-connectivity which covers this relation of border
points.

Definition 4: (density-connected) A point p is density-
connected to a point q wrt. Eps and MinPts if there is a point
o such that both, p and q are density-reachable from o wrt.
Eps and MinPts.

Density-connectivity is a symmetric relation. For density
reachable points, the relation of density-connectivity is also
reflexive (c.f. figure 3).

Now, we are able to define our density-based notion of a
cluster. Intuitively, a cluster is defined to be a set of density-
connected points which is maximal wrt. density-reachabili-
ty. Noise will be defined relative to a given set of clusters.
Noise is simply the set of points in D not belonging to any of
its clusters.

Definition 5: (cluster) Let D be a database of points. A
cluster C wrt. Eps and MinPts is a non-empty subset of D
satisfying the following conditions:

1) ∀ p, q: if p ∈ C and q is density-reachable from p wrt.
Eps and MinPts, then q ∈ C. (Maximality)

2) ∀ p, q ∈ C: p is density-connected to q wrt. EPS and
MinPts. (Connectivity)

Definition 6: (noise) Let C1 ,. . ., Ck be the clusters of the
database D wrt. parameters Epsi and MinPtsi, i = 1, . . ., k.
Then we define the noise as the set of points in the database
D not belonging to any cluster Ci , i.e. noise = {p ∈D | ∀ i: p
∉Ci}.

Note that a cluster C wrt. Eps and MinPts contains at least
MinPts points because of the following reasons. Since C
contains at least one point p, p must be density-connected to
itself via some point o (which may be equal to p). Thus, at
least o has to satisfy the core point condition and, conse-
quently, the Eps-Neighborhood of o contains at least MinPts
points.

The following lemmata are important for validating the
correctness of our clustering algorithm. Intuitively, they
state the following. Given the parameters Eps and MinPts,
we can discover a cluster in a two-step approach. First,
choose an arbitrary point from the database satisfying the
core point condition as a seed. Second, retrieve all points
that are density-reachable from the seed obtaining the clus-
ter containing the seed.

Lemma 1: Let p be a point in D and |NEps(p)| ≥ MinPts.
Then the set O = {o | o ∈D and o is density-reachable from
p wrt. Eps and MinPts} is a cluster wrt. Eps and MinPts.

It is not obvious that a cluster C wrt. Eps and MinPts is
uniquely determined by any of its core points. However,
each point in C is density-reachable from any of the core
points of C and, therefore, a cluster C contains exactly the
points which are density-reachable from an arbitrary core
point of C.

Lemma 2: Let C be a cluster wrt. Eps and MinPts and let
p be any point in C with |NEps(p)| ≥ MinPts. Then C equals
to the set O = {o | o is density-reachable from p wrt. Eps and
MinPts}.

4. DBSCAN: Density Based Spatial Clustering
of Applications with Noise

In this section, we present the algorithm DBSCAN (Density
Based Spatial Clustering of Applications with Noise) which
is designed to discover the clusters and the noise in a spatial
database according to definitions 5 and 6. Ideally, we would
have to know the appropriate parameters Eps and MinPts of
each cluster and at least one point from the respective clus-
ter. Then, we could retrieve all points that are density-reach-
able from the given point using the correct parameters. But

figure 2: core points and border points

figure 3: density-reachability and density-connectivity

there is no easy way to get this information in advance for all
clusters of the database. However, there is a simple and ef-
fective heuristic (presented in section section 4.2) to deter-
mine the parameters Eps and MinPts of the "thinnest", i.e.
least dense, cluster in the database. Therefore, DBSCAN
uses global values for Eps and MinPts, i.e. the same values
for all clusters. The density parameters of the “thinnest”
cluster are good candidates for these global parameter values
specifying the lowest density which is not considered to be
noise.

4.1 The Algorithm

To find a cluster, DBSCAN starts with an arbitrary point p
and retrieves all points density-reachable from p wrt. Eps
and MinPts. If p is a core point, this procedure yields a clus-
ter wrt. Eps and MinPts (see Lemma 2). If p is a border point,
no points are density-reachable from p and DBSCAN visits
the next point of the database.

Since we use global values for Eps and MinPts, DBSCAN
may merge two clusters according to definition 5 into one
cluster, if two clusters of different density are “close” to each
other. Let the distance between two sets of points S1 and S2
be defined as dist (S1, S2) = min {dist(p,q) | p ∈ S1, q ∈ S2}.
Then, two sets of points having at least the density of the
thinnest cluster will be separated from each other only if the
distance between the two sets is larger than Eps. Conse-
quently, a recursive call of DBSCAN may be necessary for
the detected clusters with a higher value for MinPts. This is,
however, no disadvantage because the recursive application
of DBSCAN yields an elegant and very efficient basic algo-
rithm. Furthermore, the recursive clustering of the points of
a cluster is only necessary under conditions that can be easi-
ly detected.

In the following, we present a basic version of DBSCAN
omitting details of data types and generation of additional
information about clusters:

DBSCAN (SetOfPoints, Eps, MinPts)

// SetOfPoints is UNCLASSIFIED

ClusterId := nextId(NOISE);

FOR i FROM 1 TO SetOfPoints.size DO

Point := SetOfPoints.get(i);

 IF Point.ClId = UNCLASSIFIED THEN

 IF ExpandCluster(SetOfPoints, Point,

ClusterId, Eps, MinPts) THEN

ClusterId := nextId(ClusterId)

 END IF

 END IF

END FOR

END; // DBSCAN

SetOfPoints is either the whole database or a dis-
covered cluster from a previous run. Eps and MinPts are
the global density parameters determined either manually or
according to the heuristics presented in section 4.2. The
function SetOfPoints.get(i) returns the i-th ele-
ment of SetOfPoints. The most important function

used by DBSCAN is ExpandCluster which is present-
ed below:

ExpandCluster(SetOfPoints, Point, ClId, Eps,
MinPts) : Boolean;

 seeds:=SetOfPoints.regionQuery(Point,Eps);
 IF seeds.size<MinPts THEN // no core point

SetOfPoint.changeClId(Point,NOISE);
 RETURN False;
 ELSE // all points in seeds are density-

// reachable from Point
SetOfPoints.changeClIds(seeds,ClId);

 seeds.delete(Point);
 WHILE seeds <> Empty DO
 currentP := seeds.first();
 result := SetOfPoints.regionQuery(currentP,

 Eps);
 IF result.size >= MinPts THEN

FOR i FROM 1 TO result.size DO
resultP := result.get(i);

 IF resultP.ClId
IN {UNCLASSIFIED, NOISE} THEN

IF resultP.ClId = UNCLASSIFIED THEN
seeds.append(resultP);

 END IF;
SetOfPoints.changeClId(resultP,ClId);

END IF; // UNCLASSIFIED or NOISE
 END FOR;
 END IF; // result.size >= MinPts
 seeds.delete(currentP);
 END WHILE; // seeds <> Empty

RETURN True;
 END IF
END; // ExpandCluster

A call of SetOfPoints.regionQue-
ry(Point,Eps)returns the Eps-Neighborhood of
Point in SetOfPoints as a list of points. Region que-
ries can be supported efficiently by spatial access methods
such as R*-trees (Beckmann et al. 1990) which are assumed
to be available in a SDBS for efficient processing of several
types of spatial queries (Brinkhoff et al. 1994). The height of
an R*-tree is O(log n) for a database of n points in the worst
case and a query with a “small” query region has to traverse
only a limited number of paths in the R*-tree. Since the Eps-
Neighborhoods are expected to be small compared to the
size of the whole data space, the average run time complexi-
ty of a single region query is O(log n). For each of the n
points of the database, we have at most one region query.
Thus, the average run time complexity of DBSCAN is
O(n * log n).

The ClId (clusterId) of points which have been marked
to beNOISE may be changed later, if they are density-reach-
able from some other point of the database. This happens for
border points of a cluster. Those points are not added to the
seeds-list because we already know that a point with a
ClId of NOISE is not a core point. Adding those points to
seeds would only result in additional region queries which
would yield no new answers.

If two clusters C1 and C2 are very close to each other, it
might happen that some point p belongs to both, C1 and C2.
Then p must be a border point in both clusters because other-
wise C1 would be equal to C2 since we use global parame-

ters. In this case, point p will be assigned to the cluster dis-
covered first. Except from these rare situations, the result of
DBSCAN is independent of the order in which the points of
the database are visited due to Lemma 2.

4.2 Determining the Parameters Eps and MinPts

In this section, we develop a simple but effective heuristic to
determine the parameters Eps and MinPts of the "thinnest"
cluster in the database. This heuristic is based on the follow-
ing observation. Let d be the distance of a point p to its k-th
nearest neighbor, then the d-neighborhood of p contains ex-
actly k+1 points for almost all points p. The d-neighborhood
of p contains more than k+1 points only if several points
have exactly the same distance d from p which is quite un-
likely. Furthermore, changing k for a point in a cluster does
not result in large changes of d. This only happens if the k-th
nearest neighbors of p for k= 1, 2, 3, . . . are located approxi-
mately on a straight line which is in general not true for a
point in a cluster.

For a given k we define a function k-dist from the database
D to the real numbers, mapping each point to the distance
from its k-th nearest neighbor. When sorting the points of the
database in descending order of their k-dist values, the graph
of this function gives some hints concerning the density dis-
tribution in the database. We call this graph the sorted k-dist
graph. If we choose an arbitrary point p, set the parameter
Eps to k-dist(p) and set the parameter MinPts to k, all points
with an equal or smaller k-dist value will be core points. If
we could find a threshold point with the maximal k-dist val-
ue in the “thinnest” cluster of D we would have the desired
parameter values. The threshold point is the first point in the
first “valley” of the sorted k-dist graph (see figure 4). All
points with a higher k-dist value (left of the threshold) are
considered to be noise, all other points (right of the thresh-
old) are assigned to some cluster.

In general, it is very difficult to detect the first “valley” au-
tomatically, but it is relatively simple for a user to see this
valley in a graphical representation. Therefore, we propose
to follow an interactive approach for determining the thresh-
old point.

DBSCAN needs two parameters, Eps and MinPts. How-
ever, our experiments indicate that the k-dist graphs for k > 4
do not significantly differ from the 4-dist graph and, further-
more, they need considerably more computation. Therefore,
we eliminate the parameter MinPts by setting it to 4 for all
databases (for 2-dimensional data). We propose the follow-
ing interactive approach for determining the parameter Eps
of DBSCAN:

. The system computes and displays the 4-dist graph for
the database.. If the user can estimate the percentage of noise, this per-
centage is entered and the system derives a proposal for
the threshold point from it.. The user either accepts the proposed threshold or selects
another point as the threshold point. The 4-dist value of
the threshold point is used as the Eps value for DBSCAN.

5. Performance Evaluation

In this section, we evaluate the performance of DBSCAN.
We compare it with the performance of CLARANS because
this is the first and only clustering algorithm designed for the
purpose of KDD. In our future research, we will perform a
comparison with classical density based clustering algo-
rithms. We have implemented DBSCAN in C++ based on an
implementation of the R*-tree (Beckmann et al. 1990). All
experiments have been run on HP 735 / 100 workstations.
We have used both synthetic sample databases and the data-
base of the SEQUOIA 2000 benchmark.

To compare DBSCAN with CLARANS in terms of effec-
tivity (accuracy), we use the three synthetic sample databas-
es which are depicted in figure 1. Since DBSCAN and
CLARANS are clustering algorithms of different types, they
have no common quantitative measure of the classification
accuracy. Therefore, we evaluate the accuracy of both algo-
rithms by visual inspection. In sample database 1, there are
four ball-shaped clusters of significantly differing sizes.
Sample database 2 contains four clusters of nonconvex
shape. In sample database 3, there are four clusters of differ-
ent shape and size with additional noise. To show the results
of both clustering algorithms, we visualize each cluster by a
different color (see www availability after section 6). To give
CLARANS some advantage, we set the parameter k to 4 for
these sample databases. The clusterings discovered by
CLARANS are depicted in figure 5.

For DBSCAN, we set the noise percentage to 0% for sam-
ple databases 1 and 2, and to 10% for sample database 3, re-
spectively. The clusterings discovered by DBSCAN are de-
picted in figure 6.

DBSCAN discovers all clusters (according to definition
5) and detects the noise points (according to definition 6)
from all sample databases. CLARANS, however, splits clus-
ters if they are relatively large or if they are close to some
other cluster. Furthermore, CLARANS has no explicit no-
tion of noise. Instead, all points are assigned to their closest
medoid.

figure 4: sorted 4-dist graph for sample database 3

threshold
4-dist

noise clusters
points

point

 database 1 database 2 database 3

figure 5: Clusterings discovered by CLARANS

To test the efficiency of DBSCAN and CLARANS, we
use the SEQUOIA 2000 benchmark data. The SEQUOIA
2000 benchmark database (Stonebraker et al. 1993) uses real
data sets that are representative of Earth Science tasks. There
are four types of data in the database: raster data, point data,
polygon data and directed graph data. The point data set con-
tains 62,584 Californian names of landmarks, extracted
from the US Geological Survey’s Geographic Names Infor-
mation System, together with their location. The point data
set occupies about 2.1 M bytes. Since the run time of CLAR-
ANS on the whole data set is very high, we have extracted a
series of subsets of the SEQUIOA 2000 point data set con-
taining from 2% to 20% representatives of the whole set.
The run time comparison of DBSCAN and CLARANS on
these databases is shown in table 1.

The results of our experiments show that the run time of
DBSCAN is slightly higher than linear in the number of
points. The run time of CLARANS, however, is close to qua-
dratic in the number of points. The results show that DB-
SCAN outperforms CLARANS by a factor of between 250
and 1900 which grows with increasing size of the database.

6. Conclusions

Clustering algorithms are attractive for the task of class iden-
tification in spatial databases. However, the well-known al-
gorithms suffer from severe drawbacks when applied to
large spatial databases. In this paper, we presented the clus-
tering algorithm DBSCAN which relies on a density-based
notion of clusters. It requires only one input parameter and
supports the user in determining an appropriate value for it.
We performed a performance evaluation on synthetic data

and on real data of the SEQUOIA 2000 benchmark. The re-
sults of these experiments demonstrate that DBSCAN is sig-
nificantly more effective in discovering clusters of arbitrary
shape than the well-known algorithm CLARANS. Further-
more, the experiments have shown that DBSCAN outper-
forms CLARANS by a factor of at least 100 in terms of effi-
ciency.

Future research will have to consider the following issues.
First, we have only considered point objects. Spatial data-
bases, however, may also contain extended objects such as
polygons. We have to develop a definition of the density in
an Eps-neighborhood in polygon databases for generalizing
DBSCAN. Second, applications of DBSCAN to high di-
mensional feature spaces should be investigated. In particu-
lar, the shape of the k-dist graph in such applications has to
be explored.

WWW Availability

A version of this paper in larger font, with large figures and
clusterings in color is available under the following URL:
http://www.dbs.informatik.uni-muenchen.de/

dbs/project/publikationen/veroeffentlichun-

gen.html.

References

Beckmann N., Kriegel H.-P., Schneider R, and Seeger B. 1990. The
R*-tree: An Efficient and Robust Access Method for Points and
Rectangles, Proc. ACM SIGMOD Int. Conf. on Management of
Data, Atlantic City, NJ, 1990, pp. 322-331.

Brinkhoff T., Kriegel H.-P., Schneider R., and Seeger B. 1994
Efficient Multi-Step Processing of Spatial Joins, Proc. ACM
SIGMOD Int. Conf. on Management of Data, Minneapolis, MN,
1994, pp. 197-208.

Ester M., Kriegel H.-P., and Xu X. 1995. A Database Interface for
Clustering in Large Spatial Databases, Proc. 1st Int. Conf. on
Knowledge Discovery and Data Mining, Montreal, Canada, 1995,
AAAI Press, 1995.
García J.A., Fdez-Valdivia J., Cortijo F. J., and Molina R. 1994. A
Dynamic Approach for Clustering Data. Signal Processing, Vol. 44,
No. 2, 1994, pp. 181-196.
Gueting R.H. 1994. An Introduction to Spatial Database Systems.
The VLDB Journal 3(4): 357-399.
Jain Anil K. 1988. Algorithms for Clustering Data. Prentice Hall.
Kaufman L., and Rousseeuw P.J. 1990. Finding Groups in Data: an
Introduction to Cluster Analysis. John Wiley & Sons.
Matheus C.J.; Chan P.K.; and Piatetsky-Shapiro G. 1993. Systems
for Knowledge Discovery in Databases, IEEE Transactions on
Knowledge and Data Engineering 5(6): 903-913.
Ng R.T., and Han J. 1994. Efficient and Effective Clustering
Methods for Spatial Data Mining, Proc. 20th Int. Conf. on Very
Large Data Bases, 144-155. Santiago, Chile.

Stonebraker M., Frew J., Gardels K., and Meredith J.1993. The
SEQUOIA 2000 Storage Benchmark, Proc. ACM SIGMOD Int.
Conf. on Management of Data, Washington, DC, 1993, pp. 2-11.

Table 1: run time in seconds

number of
points

1252 2503 3910 5213 6256

DBSCAN 3.1 6.7 11.3 16.0 17.8

CLAR-
ANS

758 3026 6845 11745 18029

number of
points

7820 8937 10426 12512

DBSCAN 24.5 28.2 32.7 41.7

CLAR-
ANS

29826 39265 60540 80638

 database 1 database 2 database 3

figure 6: Clusterings discovered by DBSCAN

